New Permutation Algorithms for Causal Discovery Using ICA
نویسندگان
چکیده
Causal discovery is the task of finding plausible causal relationships from statistical data [1, 2]. Such methods rely on various assumptions about the data generating process to identify it from uncontrolled observations. We have recently proposed a causal discovery method based on independent component analysis (ICA) called LiNGAM [3], showing how to completely identify the data generating process under the assumptions of linearity, non-gaussianity, and no hidden variables. In this paper, after briefly recapitulating this approach, we focus on the algorithmic problems encountered when the number of variables considered is large. Thus we extend the applicability of the method to data sets with tens of variables or more. Experiments confirm the performance of the proposed algorithms, implemented as part of the latest version of our freely available Matlab/Octave LiNGAM package.
منابع مشابه
معرفی الگوریتم جدید LICAD برای حل مشکل جایگشت محلی الگوریتم ICA
We present the new LICAD algorithm to solve the permutation problem of the ICA in the frequency domain and improve the separation quality. In the proposed algorithm, first, the sources' angles are estimated in each frequency bin using an ICA separating matrix. Then, these estimates are compared to the true values obtained from a pre-processing stage. If the difference among similar angles is le...
متن کاملThe False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data
Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...
متن کاملAn Improved Imperialist Competitive Algorithm based on a new assimilation strategy
Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملDiscovery of linear acyclic models in the presence of latent classes using ICA mixtures
Causal discovery is the task of finding plausible causal relationships from statistical data. Such methods rely on various assumptions about the data generating process to identify it from uncontrolled observations. We have recently proposed a causal discovery method based on independent component analysis (ICA) called LiNGAM, showing how to completely identify the data generating process under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006